ELABORAÇÃO E CARACTERIZAÇÃO DE BARRAS DE CEREAIS ELABORADAS COM RESÍDUO SÓLIDO DE CERVEJARIA

MOREIRA, Lidiane Muniz¹; REDMER, Mônica Beatriz Barz²; KÖHLER, Gerson Luis Bartz³; CHIM, Josiane Freitas⁴; MACHADO, Mirian Ribeiro Galvão⁴; RODRIGUES, Rosane da Silva⁴; LEITÃO, Angelita Machado⁵

Introdução

Na fabricação de cerveja obtêm-se ao final do processo duas frações: uma líquida (mosto) e uma sólida, a qual se caracteriza como resíduo. Este é constituído essencialmente pela casca do malte e apresenta, em média, em sua constituição 30% e 65% de proteínas e fibras, respectivamente. De acordo com KRONBAUER et al. (2007) a cada cem litros de cerveja produzida gera-se 20kg do resíduo seco, o qual, atualmente, é utilizado somente como ração animal.

Segundo FILHO (1999), a alta disponibilidade, a geração contínua e as características físico-químicas desse resíduo são fatores que evidenciam a possibilidade de sua utilização na alimentação humana. Além disso, seu reaproveitamento, diminuindo assim a poluição do meio ambiente, e a grande demanda por alimentos saudáveis e práticos para alimentação humana, estudos quanto à sua inserção na formulação de barras de cereais podem ser realizados. Os cereais em barra são caracterizados pela obtenção a partir da extrusão da massa de cereais de sabor adocicado e agradável, além de constituírem uma excelente fonte de vitaminas, sais minerais, fibras, proteínas e carboidratos (BRASIL, 2008).

Dentro deste contexto, visando novas alternativas para o descarte do principal resíduo sólido da indústria cervejeira, considerando sua composição química, como também, a sua associação com a elaboração de um produto de grande tendência no setor de alimentos, avaliou-se a sua utilização como principal ingrediente na produção de barras de cereais.

Metodologia

No Laboratório de Processamento de Alimentos do Curso de Bacharelado em Química de Alimentos (UFPel), o resíduo sólido fornecido por uma cervejaria da cidade de Pelotas, foi seco em estufa com circulação de ar à 60°C por 20 horas conforme descrito por ASSIS et al. (2006), a fim de alcançar uma umidade final de no máximo 6%, valor estabelecido pela RDC nº. 53, de 15 de junho de 2000 da ANVISA. Posteriormente, o resíduo foi triturado em liquidificador em velocidade média por 1 minuto. Para obtenção das barras de cereais foi seguida a metodologia de PERTUZATTI (2007), com algumas alterações, como a substituição de 50% dos ingredientes secos pelo resíduo e a adição de coco desidratado ralado e essência de coco (Tabela 1).

¹ Mestranda em Engenharia e Ciência de Alimentos/FURG/RS; E-mail: lidianemunizmoreira@yahoo.com.br;

² Bacharel em Química de Alimentos/UFPel/RS;

³ Graduando em Química de Alimentos/UFPel/RS;

⁴ Professor Adjunto, Departamento de Ciência dos Alimento/UFPel/RS;

⁵ Doutoranda em Ciência Agroindustrial/UFPel/RS.

Tabela 1. Formulação de 100g de barra de cereais à base de resíduo sólido de cervejaria

Ingrediente	Quantidade			
Xarope de aglutinação				
Xarope de glicose	28g			
Açúcar mascavo	28g			
Gordura vegetal	1,12g			
Lecitina	1g			
Outros				
Resíduo sólido de cervejaria	18,25g			
Flocos de arroz	9,12g			
Aveia em flocos	9,12g			
Coco desidratado ralado	5,62g			
Essência de coco	1 mL			

Fonte: adaptado de PERTUZATTI, 2007.

A partir da formulação citada na Tabela 1 as barras de cereais foram elaboradas de acordo com o esquema a seguir (Figura 1).

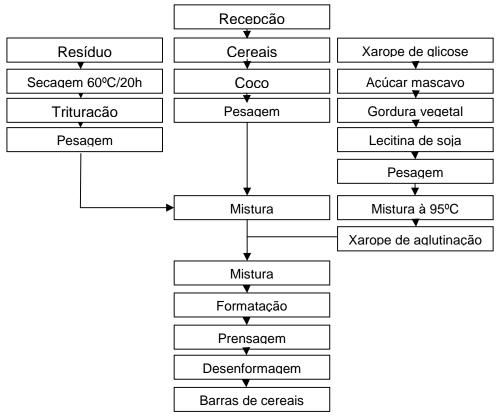


Figura 1. Esquema para produção de barras de cereais à base de resíduo sólido de cervejaria.

Conforme observado na Figura 1, as barras de cereais foram obtidas através da homogeneização de três porções: resíduo; cereais e coco; xarope de aglutinação. Essas três porções foram misturadas à temperatura ambiente e posteriormente passaram às etapas de formatação, prensagem e desenformagem, respectivamente. Após, as barras de cereais foram avaliadas quanto ao seu teor de umidade, o qual

deve apresentar-se inferior a 15% conforme a resolução – CNNPA nº. 12 de 24 de julho de 1978 da ANVISA. Além disso, os teores de proteínas, lipídios, cinzas, fibra bruta e carboidratos por diferença, foram determinados, em triplicata, conforme métodos descritos pela AOAC (1995), e posteriormente analisados através do programa Statistic 7.0 a fim de caracterizar e comparar o produto em estudo com barras de cereais de coco já comercializadas.

Resultados e Discussão

A seguir, a barra de cereal elaborada com resíduo de cervejaria (Figura 2).

Figura 2. Barras de cereais à base de resíduo sólido de cervejaria.

Na Tabela 2 estão expressos os resultados obtidos na determinação da composição centesimal da barra de cereal com resíduo, assim como a composição de uma barra comercial de coco.

Tabela 2. Composição centesima	l das barras	de cereais	formulada e	comercial
--------------------------------	--------------	------------	-------------	-----------

Determinação	Barra formulada	Barra comercial ¹
Umidade (%)	11,50	-
Cinzas (%)	1,20	-
Proteínas (%)	6,03 ^a	5,60 ^a
Lipídios (%)	1,88 ^a	15,60 ^b
Fibras (%)	3,81 ^a	4,00 ^a
Carboidrato* (%)	75,58 ^a	64,00 ^a

¹ Valores extraídos do rótulo.

Analisando a umidade da barra de cereal em estudo, verificou-se a sua conformidade com a resolução – CNNPA nº. 12 de 24 de julho de 1978 da ANVISA, a qual relata que estes produtos devem apresentar umidade inferior a 15%.

Quando comparado o produto em estudo com um industrializado, percebeuse que os valores de proteínas, carboidratos e fibra não diferiram significativamente (p>0,05). Entretanto, este revelou teores de lipídios mais baixos que os das barras comerciais, diferenciando-se significativamente (p<0,05), fato que pode ser explicado pela pequena quantidade de gordura adicionada. Como também, ao baixo teor de lipídios encontrado no resíduo, cerca de 9% (VIEIRA & BRAZ, 2009).

Segundo BRITO et al. (2004), alimentos que apresentam 2,4 à4,4% de fibra total são considerados produtos com moderado teor de fibra, classificando assim a barra de cereal elaborada no presente trabalho. Ainda quanto ao teor de fibra total

^(*) Determinação pelo método de diferença. Letras distintas na mesma linha diferem entre si pelo Teste de Tukey a 5% de probabilidade.

encontrado, ente mostrou-se semelhante a outros, como BRITO et al.. (2004), o qual encontrou 3,44% de fibra total em barras de cereais de soja.

A formulação final da barra de cereais apresentou, em média, 6,03% de proteína, teor superior e desejável em relação aos produtos encontrados no mercado (com valores médios de 4,4% de proteína). Apresentou também teor de carboidratos e conteúdo de fibras totais semelhantes aos comercializados, que são, em média, 74,0 e 4,0%, respectivamente. O conteúdo de matéria graxa apresentouse satisfatório (1,88%) em relação aos produtos convencionais, que apresentam teores de 4,0 a 12,0% (FREITAS & MORETTI, 2006).

Conclusões

Os resultados permitem concluir que o principal resíduo sólido de cervejaria pode ser utilizado como ingrediente para a elaboração de barras de cereais, obtendo-se assim um alimento prático e com valores de proteína, fibras e carboidratos semelhantes aos de produtos já comercializados.

Referências

ASSIS, L. M.; MEDINA, A. L.; CARVALHO, D.; RODRIGUES, R. da S.Elaboração de farelo a partir de bagaço de malte de cevada proveniente da indústria cervejeira. In: XV CONGRESSO DE INICIAÇÃO CIENTÍFICA E VIII ENPOS, 2006, Pelotas. Anais do XV Congresso de Iniciação Científica: UFPEL, 2006.

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS (1995). Official methods of analysis. 15 ed. Washington, 1995. 109p.

BRASIL. Resolução CNNPA N° 12 de 24 de julho de 1998. Dispõe aprovação do regulamento técnico para fixação da identidade e qualidade de barras de cereais. Disponível em: < http://www.anvisa.gov.br/e-legis > Acesso em: março de 2008.

BRASIL. Resolução CNNPA nº. 53, de 15 de junho de 2000. Dispõe sobre o limite máximo de umidade para Mistura à Base de Farelo de Cereais. Disponível em: < http://www.anvisa.gov.br/e-legis > Acesso em: março de 2008.

BRITO et al. Elaboração e avaliação global de barra de cereais caseira. **Boletim Ceppa.** Curitiba. n 1. v. 22, p.35-50. 2004.

FILHO, Cabral. Avaliação do resíduo de cervejaria em dietas de ruminantes através de técnicas nucleares e correlatas. 1999. 82f. Tese (Mestrado em Ciências, área de concentração: Energia Nuclear na Agricultura) — Universidade de São Paulo, São Paulo.

FREITAS, D. C.; MORETTI, R. H. Caracterização e avaliação sensorial de barra de cereais funcional de alto teor protéico e vitamínico. **Ciência e Tecnologia de Alimentos.** N 2. V 26, 2006

KRONBAUER, E.A.W.; PERALTA, R.M.; KADOWAKI, M.K. **Produção** de xilanase por *Aspergillus casielus* com diferentes fontes de carbono. **Boletim Ceppa.** V.25. nº2.p. 207-216. 2007.

PERTUZATTI, P.B.; et al. Avaliação Sensorial com Passas de Mirtilo com e sem Desidratação Osmótica. (trabalho acadêmico) – Engenharia de Alimentos – FURG, Rio Grande – RS, 2007.

VIEIRA, A. A.; BRAZ, J. M. Bagaço de cevada na alimentação animal. **Revista Eletrônica Nutritime.** n 3. v. 6, p.973-979. Jun 2009.